GITC演讲-滴滴路况感知AI及应用

背景介绍

第三次受邀作为嘉宾参加GITC人工智能方向的演讲。前两次的演讲题目都和推荐和变现相关。因为现在在滴滴负责地图感知AI团队,所以这次介绍的内容主要和地图AI相关。

地图与推荐&变现AI技术差异

地图中设计到的AI技术与推荐&变现既有相同的地方,但也有很多的不同。

地图是一个整体上环节较多的复杂问题,整个地图系统中涉及到数据采集,生产,更新;中台的各种数据引擎;以及最终的地图应用。而且在涉及到数据生产的过程中会更像传统行业的生产过程,会涉及到较多的生产工艺保证数据质量,如果数据质量上不去,后边的算法效果就无从谈起;同时整个地图产品中涉及到的环节较多,包括底层的物理世界感知,例如定位,地图匹配, 实时路况或者路况预测;作为引擎的路径规划(route planing),ETA,上层的导航等, 均是环环相扣,某个环节没做好,可能都会导致最终效果较差。同时地图还存在另外一个较大的问题:效果不容易评估。

而相较之下,变现或者推荐反倒是一个相对单纯的问题,所有的数据,包括内容数据,用户反馈数据均形成闭环,而且相对来说也较为容易评估

演讲内容

地图中AI的使用场景非常多,例如定位,地图匹配,实时/预测路况,上下车点,ETA,路径规划等。这次演讲的内容主要集中在地图感知AI。什么是地图感知AI? 说的简单一点,就是我们如何通过大规模的预采集数据,以及用户反馈数据,来感知物理时间中发生的和交通相关的状态和事件。该方向涉及到的环节也非常多,故这次演讲主要集中在底层的地图匹配和实时路况/路况预测两个方向。

图:地图感知AI技术:定位,地图匹配,(实时/预测)路况

地图匹配(Map-Matching)

图:基于隐马尔科夫模型的地图匹配(Map-Matching)

目前业界比较流行的地图匹配的算法来源,基本的思路都来自于微软09年发布的基于马尔科夫地图匹配算法。该算法的基本思路是将GPS点匹配某条候选道路的概率,拆解为发射概率(观察概率)与转移概率的组合。具体参见博文《LBS地图Map-Matching流行算法及应用

该方式的优点是模型相对简单,且在很多场景均能够取得较好的效果。但缺点也很明显:该算法很难进一步融入更丰富的特征, 例如GPS的精度,候选道路的属性等,以及运动信息(例如速度是否超过限速信息)

所以后来Map-Matching提升效果的思路逐渐演变为融合多维信息,而最直接的方法就是使用Shallow模型进行学习。

图:浅模型Map-Matching算法

路况预测

该方向一般一开始的做法,也是性价比最高的做法,都是快速根据专家的经验,使用规则的方式将效果快速做上去,因为现实物理世界情况太多,而且很多时候是只要某个因素发生的时候, 就能够确定现实物理世界发生的情况,但该情况覆盖的CASE却不多。所以一开始使用规则的方式,一方面性价比比较高,另外一方面也能够让我们把问题分析理解的更透彻,例如现实世界可能会出现哪些情况,应该使用那些规则来进行处理。而这些规则, 后续很容易转变为模型的特征输入。

图:Rule-based 路况发布

所以在rule-based的算法做到一定效果后,我们就开始尝试浅模型的方法,为了保持系统的可解释性,我们选择了经典的xgboost。虽然模型并没有那么高深,但效果提升比较明显。

图:浅模型路况发布

而后续需要进一步提升效果,就需要做两方面的工作:更多高质量,信息更丰富的数据, 以及表达能力更强的模型。

对于数据:GPS信息的使用虽然还有空间,但天花板已经比较明显,很难使用GPS就出现质的飞越;此处解决的思路是引入图像数据,因为图像是现实世界的绝对真实体现,信息丰富。

而从模型的角度,浅模型的缺点是很难将时间和空间关系建模进模型。解决的思路很直接:使用图卷积学习空间依赖关系,而使用时间序列学习时间依赖关系。目前该算法还在尝试中[6]

图:时空依赖模型

ETA

ETA内容在《工业界ETA技术及滴滴WDR模型》中进行介绍,故此处就不进行展开

图:DIDI WDR ETA[5]

更多内容请参见GITC发布的演讲视频,或参见PPT:滴滴地图感知AI技术及应用

参考文献

  1. 《2017年滴滴出行平台就业研究报告》
  2. 滴滴地图感知AI技术及应用
  3. Gers, Felix A., Jürgen Schmidhuber, and Fred Cummins. "Learning to forget: Continual prediction with LSTM." (1999): 850-855.
  4. Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016.
  5. Wang, Zheng, Kun Fu, and Jieping Ye. "Learning to Estimate the Travel Time." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018.
  6. Zhang, Zhengchao, et al. "Multistep Speed Prediction on Traffic Networks: A Graph Convolutional Sequence-to-Sequence Learning Approach with Attention Mechanism." arXiv preprint arXiv:1810.10237 (2018).

https://outreach.didichuxing.com/tutorial/kdd2018/

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注